3.15 \(\int \sqrt {-x+x^2} \, dx\)

Optimal. Leaf size=39 \[ -\frac {1}{4} \sqrt {x^2-x} (1-2 x)-\frac {1}{4} \tanh ^{-1}\left (\frac {x}{\sqrt {x^2-x}}\right ) \]

[Out]

-1/4*arctanh(x/(x^2-x)^(1/2))-1/4*(1-2*x)*(x^2-x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {612, 620, 206} \[ -\frac {1}{4} \sqrt {x^2-x} (1-2 x)-\frac {1}{4} \tanh ^{-1}\left (\frac {x}{\sqrt {x^2-x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[-x + x^2],x]

[Out]

-((1 - 2*x)*Sqrt[-x + x^2])/4 - ArcTanh[x/Sqrt[-x + x^2]]/4

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rubi steps

\begin {align*} \int \sqrt {-x+x^2} \, dx &=-\frac {1}{4} (1-2 x) \sqrt {-x+x^2}-\frac {1}{8} \int \frac {1}{\sqrt {-x+x^2}} \, dx\\ &=-\frac {1}{4} (1-2 x) \sqrt {-x+x^2}-\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x}{\sqrt {-x+x^2}}\right )\\ &=-\frac {1}{4} (1-2 x) \sqrt {-x+x^2}-\frac {1}{4} \tanh ^{-1}\left (\frac {x}{\sqrt {-x+x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 46, normalized size = 1.18 \[ \frac {2 x^3-3 x^2+x+\sqrt {-((x-1) x)} \sin ^{-1}\left (\sqrt {1-x}\right )}{4 \sqrt {(x-1) x}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[-x + x^2],x]

[Out]

(x - 3*x^2 + 2*x^3 + Sqrt[-((-1 + x)*x)]*ArcSin[Sqrt[1 - x]])/(4*Sqrt[(-1 + x)*x])

________________________________________________________________________________________

fricas [A]  time = 0.87, size = 36, normalized size = 0.92 \[ \frac {1}{4} \, \sqrt {x^{2} - x} {\left (2 \, x - 1\right )} + \frac {1}{8} \, \log \left (-2 \, x + 2 \, \sqrt {x^{2} - x} + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x)^(1/2),x, algorithm="fricas")

[Out]

1/4*sqrt(x^2 - x)*(2*x - 1) + 1/8*log(-2*x + 2*sqrt(x^2 - x) + 1)

________________________________________________________________________________________

giac [A]  time = 0.42, size = 37, normalized size = 0.95 \[ \frac {1}{4} \, \sqrt {x^{2} - x} {\left (2 \, x - 1\right )} + \frac {1}{8} \, \log \left ({\left | -2 \, x + 2 \, \sqrt {x^{2} - x} + 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x)^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(x^2 - x)*(2*x - 1) + 1/8*log(abs(-2*x + 2*sqrt(x^2 - x) + 1))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 33, normalized size = 0.85 \[ -\frac {\ln \left (x -\frac {1}{2}+\sqrt {x^{2}-x}\right )}{8}+\frac {\left (2 x -1\right ) \sqrt {x^{2}-x}}{4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2-x)^(1/2),x)

[Out]

1/4*(2*x-1)*(x^2-x)^(1/2)-1/8*ln(-1/2+x+(x^2-x)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 1.35, size = 43, normalized size = 1.10 \[ \frac {1}{2} \, \sqrt {x^{2} - x} x - \frac {1}{4} \, \sqrt {x^{2} - x} - \frac {1}{8} \, \log \left (2 \, x + 2 \, \sqrt {x^{2} - x} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x)^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(x^2 - x)*x - 1/4*sqrt(x^2 - x) - 1/8*log(2*x + 2*sqrt(x^2 - x) - 1)

________________________________________________________________________________________

mupad [B]  time = 0.20, size = 29, normalized size = 0.74 \[ \sqrt {x^2-x}\,\left (\frac {x}{2}-\frac {1}{4}\right )-\frac {\ln \left (x+\sqrt {x\,\left (x-1\right )}-\frac {1}{2}\right )}{8} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2 - x)^(1/2),x)

[Out]

(x^2 - x)^(1/2)*(x/2 - 1/4) - log(x + (x*(x - 1))^(1/2) - 1/2)/8

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{2} - x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2-x)**(1/2),x)

[Out]

Integral(sqrt(x**2 - x), x)

________________________________________________________________________________________